National

Aug 24, 2010 3:31 PM by Bea Karnes, News First 5

New microbe discovered eating Gulf oil spill

A newly discovered type of oil-eating microbe suddenly is flourishing in the Gulf of Mexico and gobbling up the BP spill at a much faster rate than expected, scientists reported Tuesday.

Scientists discovered the new microbe while studying the underwater dispersion of millions of gallons of oil spilled since the explosion of BP's Deepwater Horizon drilling rig.

Also, the microbe works without significantly depleting oxygen in the water, researchers reported in the online journal Sciencexpress.

"Our findings ... suggest that a great potential for intrinsic bioremediation of oil plumes exists in the deep-sea," lead researcher Terry Hazen, a microbial ecologist at Lawrence Berkeley National Lab in Berkeley, California, said in a statement.

The data is also the first ever on microbial activity from a deep-water dispersed oil plume, Hazen said.

Environmentalists have raised fears about the giant oil spill and the underwater plume of dispersed oil, particularly its potential effects on sea life. A report just last week described a 22-mile-long underwater mist of tiny oil droplets.

"Our findings show that the influx of oil profoundly altered the microbial community by significantly stimulating deep-sea" cold temperature bacteria that are closely related to known petroleum-degrading microbes, Hazen reported.

Their findings are based on more than 200 samples collected from 17 deep-water sites between May 25 and June 2. They found that the dominant microbe in the oil plume is a new species, closely related to members of Oceanospirillales.

This microbe thrives in cold water, with temperatures in the deep recorded at 41 degrees Fahrenheit.

Hazen suggested that the bacteria may have adapted over time due to periodic leaks and natural seeps of oil in the Gulf.

Scientists also had been concerned that oil-eating activity by microbes would consume large amounts of oxygen in the water and create a "dead zone" dangerous to other life. The new study found that oxygen saturation outside the oil plume was 67 percent while within the plume it was 59 percent.

"The low concentrations of iron in seawater may have prevented oxygen concentrations dropping more precipitously from biodegradation demand on the petroleum, since many hydrocarbon-degrading enzymes have iron as a component," Hazen said. "There's not enough iron to form more of these enzymes, which would degrade the carbon faster but also consume more oxygen."

The research was supported by an existing grant with the Energy Biosciences Institute, a partnership led by the U.C. Berkeley and the University of Illinois that is funded by a $500 million, 10-year grant from BP. Other support came from the U.S. Department of Energy and the University of Oklahoma Research Foundation.

Sciencexpress is the online edition of the journal Science.

 

»Comments

»Topics in this article

More News

Weather - Forecast
Story Photo

4 hours ago

Playing Dodgeball with Showers

Scattered showers and a few thunderstorms have developed across southern Colorado Saturday afternoon. The chance for rain will remain in the forecast...

Most Popular

Top Videos

1 2 3 4